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2 Checking the Momentum Scale
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Checking the Momentum Scale
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Mass resolution

Systematics on tracking and
measured momentum due
to misalignment have been
studied using

J/Psi->pp and
/->|u decays.
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Momentum bias (systematic differences in py)

Momentum bias is extracted from data‘for electrons‘and
positrons from Z and W decays using E/p method with
parametrization of momentum go/p = g/p[1+gpT delta(sagitta)].
Except for a few isolated spots in very forward region,

local biases stay within |deltal] < 0.5 TeV-!, corresponding to
< 2% bias at 40 GeV.
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Vertex reconstruction & robust technigue

2 Reconstruction of primary vertices | Finding (first) Fitting (then)

" The reconstruction of primary vertices 1s organized in two steps: a) the primary vertex finding algorithm,
dedicated to associate reconstructed tracks to the vertex candidates, and b) the vertex fitting algorithm,
dedicated to reconstruct the vertex position and its corresponding error matrix. It also refits the associated
tracks constraining them to originate from the reconstructed interaction point. The detailed implementa-
tion of the finding and fitting algorithms 1s described below.

In this analysis, reconstructed tracks fulfilling the following quality requirements are used for the
primary vertex reconstruction:

e pr > 150 MeV,

e |dy| < 4 mm,

e o(dy) <5mm,

e 0(70) < 10 mm,

e at least 4 hits in the SCT detector,

e at least 6 hits 1n the pixel and SCT detectors.

Here dj and 7 denote the transverse and longitudinal impact parameters of tracks with respect to the
centre of the luminous region, and o(dp) and o(zp) denote the corresponding uncertainties as estimated
in (he track Nit. The symbol pt denoies the reconstrucied (rackK transverse momentum. I[he selection
criteria based on the impact parameters are designed to remove a good fraction of the tracks originating
from secondary interactions. As estimated from simulations, based on results obtained with the PYTHIA
Monte Carlo program [6] and the full simulation of the ATLLAS detector, in non-diffractive pp collisions
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Robust vertex reconstruction

at 7 TeV, the above requirements are fulfilled by (83.5 + 0.1)% of reconstructed tracks corresponding to
primary particles.

The luminous region in ATLAS is determined during a physics run, typically every = 10 minutes,
by applying an unbinned maximum likelihood fit to the distribution of primary vertices recorded in
this period of time, where the same primary vertex reconstruction algorithm 1s used as described in the
following, but without applying the beam-spot constraint. A detailed description of how the beam-spot
1s determined and on the uncertainties connected with 1ts determination can be found 1n Ref. [7].

The Iterative Vertex Finding approach used for this study works as follows:

e Reconstructed tracks compatible with originating from the interaction region are pre-selected ac-
cording to the criteria listed above.

e A vertex seed is found by looking for the global maximum in the distribution of z coordinates of
the tracks, computed at the point of closest approach to the beam spot center.

e The vertex position is determined using the adaptive vertex fitting algorithm [8], which takes as
input the seed position and the tracks around it. The adaptive vertex fitter is a robust y* based fitting
algorithm which deals with outlying track measurements by down-weighting their contribution to
the overall vertex y*. The down-weighting is performed progressively, while the fit iterations
proceed according to a fixed number of steps (deterministic annealing scheme [8]).

e Tracks incompatible with the vertex by more than approximately 7 o~ are used to seed a new vertex.
The compatibility of the track to the vertex is expressed in terms of a y* with 2 degrees of freedom.
The present cut is y> > 49. This procedure is repeated until no unassociated tracks are left in the
event or no additional vertex can be found.

The very loose cut of 7 > 49 1s intended to reduce the number of single vertices which split into two

due to the presence of outlying track measurements.
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Vertex fitting - O

Original track (contributind large X?)

Qriginal track

\ Origtral track
AN

/ R Beam spot constraint

Original track
Ortowal track
A

Qriginal track

Original track (contribufing large

Original track (contributing large X?)
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Vertex fitting - 1

Original track is modifieONposing
that it passes through\V

C N~

Fitted prfimea

N

"v‘ == -Beam spot constraint

.~
Ny
Ay
Ay
~~
N ,

7ertex Vp
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Vertex fitting - 2

Original track is modifiedNnposing

that it passes through\Y
-
Al

> -

~-Beam spot constraint

X
Original track is modifiga#fMpo ’
that it passge-through V,

Fitted seconNdary vertex V.
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ATLAS vertexing

takes z-position of track at beam-line as seed
iterative Chi? fit of nearby tracks

new seed from tracks displaced by more than 7
beam-spot used as a constraint
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High pile-up events: 1 and Np,, (or Ny, )

The number of proton-proton interactions per bunch crossin follows a Poisson distribution with mean
valie y1. During a fill, u decreases with decreasing beam intensity hnd increasing emittance, such that
the quote peak value, or uP=*, 1s the highest value 1n a single bunch crossing at the start of the stable
beam period of the fill. The number of interactions per bunch crossing also varies between bunches. The
number of interactions averaged over all bunch crossings and averaged over the data analysed will be
referred to as ().

In data, u 1s calculated using the following formula:

L X Oipe —Nlsz
= ! L=—4 (1)

nbunchf r

where L is the luminosity, oj,e 18 the total inelastic cross-section, npynch the number of colliding bunches

and f; the LHC revolution frequency. [The uncertainty on u flepends on the uncertainties on the luminos-
e luminosi

ity and the total inelastic cross-section. measurement 1s performed with dedicated detec-
tors and calibrated using special LHC fills.
for the 2011 physics data. The high-intensity runs studied have an additional 1% uncertainty to account
for the extrapolation of direct luminosity measurements from lower intensity runs. The total inelastic
cross-section used, Ojne) = 71.5 mb, is taken from Pythia [6]. The value is ~3% lower than the measure-
ment from TOTEM of 73.5 £ 1.9 mb [7]. The total cross-section has also been measured by ATLAS to
be 69.1 £2.4(exp.) £6.9(extr.) mb [8, 9] by extrapolating a measurement of the cross-section for events
in the acceptance of scintillators in the forward region. The difference between the ATLAS and TOTEM

measurements and the nominal value from Pythia 1s taken as ¢ systematic uncertainty on u of 3%.
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A, 9: S L A B BN Ja
¢ gE. - Data2011 E
- — —— Fit (from MC) R =
7= \4 —]
sf_det=2.31 fo 3 . . |
= = In an ideal detector with perfect resolution and
SE- X\ K = acceptance you would expect to have
— L 4 ]
o= /4 , ATLAS Preliminary = <M\, >~ M
S — VX
— o' -
2 ’,’ i =
— * T ] g x .
= Prask IS the inability of resolving nearby vertices
5124—? - | PR R R ST R B
E I Co%e. et
g 1 . 979040000 0:6:6:6-6-5.5-0-0:5:0- 000000 m..”m‘..s-......’:gm ........... —]
095 2 4 6 8 10 12 14
<u>

The average number of reconstructed vertices is shown as a function of the average number of interactions w. The red triangles
show the simulation prediction for minimum-bias events without any trigger bias using the 2012 setup for beam and detector
conditions. The simulation covers the u range up to 22 and a higher interval which was observed in some special high-u data taking
runs.

The simulation has been fitted (orange line) with a function taking into accq
inability of resolving nearby interactions in distinct vertices (vertex masking] <nvemces> EU - F(eu, pmask) F(ew, phas) 1S @ function
that estimates the correction to the number of reconstructed vertices for R ' : of not resolving two
interactions in distinct vertices, p, ..., depends on the detector and vertex reconstruction algorlthm performance (assumed to be
independent from pile-up) and on the density of the interactions (which depends on the beamspot longitudinal profile).The latter
dependence is exploited to test the effect of a different beamspot longitudinal profile (approximately flat, called Crab Kissing); this
is shown in the Figure as a blue line.

Fakes have been found to be negligible in the range covered by simulation and are assumed to be equally negligible in the
extrapolated regions. The correction to the number of reconstructed vertices for masking effects F(eu, p,,.) is show by the dotted
lines for the two configurations.
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High pile-up events
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Vertices in high pile-up events

Number of Vertices
Vertex reconstruction efficiency (top left) and fake probability (top right) as a
function of the average number of interactions in minimum bias MC and the
average number of tracks per event as a function of the number of vertices
for data and simulation (bottom) [4].
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Fake vertices vs n
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Vertex resolution
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Figure 8: Estimated vertex resolution oy gue 1n 7 TeV data as a function of the number of tracks Ny

(left) or as a function of the value of /Ztrk p?r (right).
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Figure 9: Estimated vertex resolution o, e In 7 TeV data as a function of the number of tracks Ny

(left) or as a function of the value of /Ztrk p?r (right).
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